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The attached eddy hypothesis developed for zero pressure gradient boundary layers 
and for pipe flow is extended here to boundary layers with arbitrary streamwise 
pressure gradients, both favourable and adverse. It is found that in order to obtain 
the correct quantitative results for all components of the Reynolds stresses, two basic 
types of eddy structure geometries are required. The first type, called type-A, is 
interpreted to give a ‘wall structure’ and the second, referred to as type-B, gives a 
‘wake structure’. This is in analogy with the conventional mean velocity formulation 
of Coles where the velocity is decomposed into a law of the wall and a law of the 
wake. 

If the above mean velocity formulation is accepted, then in principle, once the 
eddy geometries are fixed for the two eddy types, all Reynolds stresses and associated 
spectra contributed from the attached eddies can be computed without any further 
empirical constants. This is done by using the momentum equation and certain 
convolution integrals developed here based on the attached eddy hypothesis. The 
theory is developed using data from equilibrium and quasi-equilibrium flows. In 
Part 2 the authors’ non-equilibrium data are used. 

1. Introduction 
This paper describes extensions to the work on the attached eddy hypothesis of 

Townsend (1976) and the model based on this developed at Melbourne by Perry and 
various co-workers. In this paper all developments in the attached eddy hypothesis 
over the last decade are brought together and expressed with a consistent notation and 
set of normalizing conditions. It is then extended to boundary layers with imposed 
streamwise pressure gradients. Past work has been mainly concerned with pipe flow 
and zero pressure gradient flow. 

In most past work the eddies in the attached eddy hypothesis were used only no- 
tionally to illustrate functional forms and trends and to aid in dimensional arguments. 
No serious attempt to produce quantitative results has been made. To do this would 
require a knowledge of precise eddy shapes. In this paper some tentative shapes are 
tried and quantitative comparisons are made with data. Although precise shapes for 
representative eddies are not known and probably will never be known, the authors 
are convinced that definite conclusions can be drawn concerning important gross 
properties of the attached eddy shapes. 
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By the term ‘attached eddies’ we mean a set of geometrically similar eddies con- 
sisting of a range of length scales with individual length scales proportional to the 
distance at which the eddy is located from, or extends above, the wall. The essential 
finding here is that there are two types of attached eddies which are responsible 
for most of the turbulent kinetic energy and Reynolds shear stresses. These will be 
referred to as type-A and type-B eddies. In all previous work only type-A eddies were 
used in the modelling. 

For type-A eddies, the vortex lines extend to the wall while for type-B the vortex 
lines undulate in the spanwise direction but do not reach the boundary. It is tentatively 
proposed here that the type-A eddies are responsible for a universal wall structure 
and for the mean-flow logarithmic law of the wall, which here extends throughout 
the layer, whereas type-B structures produce a wake structure (which contributes to 
‘non-universal’ turbulence intensities in the wall region) and are responsible for the 
mean flow wake component. This is consistent with the ideas expressed by Coles 
(1956, 1957) who was concerned only with mean velocities. The wall structure is 
identical to the ‘pure wall’ flow which occurs in equilibrium sink flow where the Coles 
wake factor is zero. From this hopefully a unified theory can be constructed, valid 
for favourable, zero and adverse pressure gradient flows. 

As in Perry, Henbest & Chong (1986) it is shown from spectral considerations that 
there must be further structures which contribute to the high-wavenumber motions. 
These will be collectively referred to as type-C eddies. These are probably detached 
eddies, i.e. their length scale is not related directly to the distance they are located 
from the wall. The eddies in the Kolmogorov inertial subrange and dissipation range 
form a subset of type-C structures. These make only a minor contribution to the 
Reynolds normal stresses and are considered in more detail in Part 2 (Marugih & 
Perry 1995). 

Perry, MarugiC & Li (1994) recently illustrated one way the attached eddy hypothesis 
might be incorporated into a ‘closure scheme’ for computing the evolution of the mean 
flow parameters of a turbulent boundary layer developing in a pressure gradient. Only 
type-A eddies were used in the formulation and by making certain hypotheses about 
the weighting functions T and w to be defined later, a connection between the mean 
velocity defect and the Reynolds shear stress was formulated. Unfortunately if all 
stress components are to be accurately described by the attached eddy model it is 
found here that it is almost certain that more than one type of eddy structure is 
necessary. Perhaps in future work this extended model might be useful in formulating 
a ‘closure scheme’ along the lines of Perry et al. (1994). We make no attempt to do 
this here. 

2. Shear stress distributions 
Analytical expressions for the shear stress distribution are used in development of 

the model. The analysis in this section was developed by Perry et al. (1994) but 
further details are highlighted here and in Appendix A for the purpose of the present 
paper. 

A slightly generalized form of the Coles (1956) logarithmic wall of the wall and 
law of the wake formulation is 
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and in the velocity defect form 

(2) 

Here U1 is the local free-stream velocity, U is the local mean velocity, U ,  is the shear 
velocity, v is the fluid kinematic viscosity, Wc is the Coles wake function, ti is the 
Karman constant (= 0.41), A is the universal law of the wall constant (= 5.1), z is the 
distance normal to the wall and q = z/6, where 6, is the boundary layer thickness. 

It is assumed that the mean flow is two-dimensional and that streamwise derivatives 
of normal stresses can be neglected. The mean continuity equation is 

1 n n 
- - -- logq + -Ww,[l,n] - -W,[q,H]. 

ti K ti 

au aw 
ax aZ -+-=o,  (3) 

where W is the mean velocity component normal to the wall and the streamwise 
momentum equation is 

where P is the free-stream static pressure and z is the local effective shear stress given 
by 

- au z ---m+v-. P a Z  

Here v a U / a z  is the viscous contribution and -iii& is the Reynolds (kinematic) shear 
stress where u1 and u3 are the fluctuating components of velocity in the x- and 
z-directions respectively and the overbar denotes a time average. For zU,/v > 50 
the viscous contribution in ( 5 )  is negligible. It should be emphasized here that the 
authors are assuming that Reynolds numbers are sufficiently large that the viscous 
zone can be completely neglected and that the logarithmic defect law goes right to the 
wall. For momentum balance purposes this is found to be accurate even for moderate 
Reynolds numbers (see Perry, et al. 1994). 

It can be shown from all the above equations (see Appendix A) that 

where 

where Ci  is the local skin friction coefficient, given by 

where TO is the wall shear stress. The functions f l  and f 2  and f 3  are somewhat compli- 
cated and are given in Appendix A. The Lewkowicz (1982) formulation for W, [q, n ]  
will be introduced into the equations. This formulation ensures that BU/dz = 0 
at q = 1, and is given by 

(9) 
1 
n W,[q,n] = 2q2(3 - 2q) - -q2(1 - q) ( l  - 2q). 
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With (91, f l ,  f 2  and f 3  have the general form 
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where 

and 

D1[q,r17,S]  = c cm,n n*sn. 
m=O,n=O 

In all cases y = 9, 6 = 2, a = 4, p = 3, 0 = 2, y = 2 and terms involving logarithms 
are restricted to y logy, q3 log q,  y4 log y ,  y5 log y and y(1og v ) ~ .  There are no y2 terms 
anywhere and not all Aq,r, B,,n and Cm,n are finite. The fully expanded forms of f l ,  f 2  

and f 3  can be generated quite easily using Mathematica or any equivalent package, 
and are given in an internal report by Perry and M a r u E  (1993). 

For finite y and 17, the fi can be written as 

a1S2 + a2S + a3 

c1s3 + c 2 s 2  + c3S + c4 
blS2 + b2S + b3' 

where al, a2 etc. are polynomials in y and Ii'. 
From equation (6) it can be seen that there are three components of shear stress 

as seen schematically in figure 1 for a typical adverse pressure gradient layer. The 
first term gives a distribution which resembles that of a zero pressure gradient layer. 
The second term gives a negative contribution if 6,dIi'ldx is positive and the third 
term gives a positive contribution for a negative (6,/Ul)(dUI/dx). For the case of 
a favourable pressure gradient 6,dn /dx is usually negative and (G,/Ul)(dU1 /dx) is 
positive and so the second and third components of the shear stress reverse sign. 

It is usual to express the pressure gradient parameter in terms of the Clauser (1954, 
1956) parameter p, thus 

where ,!l as defined by Clauser is 

6' dp 
70 dx' 

p = - -  

where 6' is the displacement thickness and C1 is given by 
1 

cl[m = f[y,Ii'I d?. 

Equation (6) can now be written as 
z 
- =f1[r,Ii',SI +gl[%Ii',Slr +g2[vl,n,slp 
TO 
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0 rl 
FIGURE 1. Components of equation (6) for a typical adverse pressure gradient case. 

After Perry et al. (1994). 

where 
dI l  5 = S&-.  

S CIS’ dx 
f 2  f 3  g1=-,  g2=-- 

From the structure of the equations shown in (11) it can be seen that for a finite 
and P ,  7/70 remains finite and becomes independent of S as S + 00. 

2.1. Equilibrium layers 

For equilibrium layers as originally defined by Clauser, dIl /dx = 0 and this gives 
self-similar mean velocity defect profiles. It can be seen that for a fixed p as S + co 
we also have self-similar shear stress profiles. This is a more acceptable definition of 
equilibrium layers, i.e. we have self-similarity in both velocity defect and shear stress 
profiles. This is the definition used by Rotta (1962) and Townsend (1961) but here it is 
approached asymptotically for S sufficiently large which would require unrealistically 
high Reynolds numbers. Rotta (1962) and others have shown that for finite S, this 
type of smooth-wall equilibrium layer can occur only in sink flow. Perry (1968, 1992) 
and Perry et al. (1994) have shown that approximate equilibrium flow would occur 
at finite S if P = P [ S , n ]  is allowed to vary appropriately with S before reaching its 
asymptotic value P,[ I l ]  = P[co,n] which is a function only of Il. This essentially 
means that it may be possible to produce a class of layers where the shear stress 
distributions is fixed once Il is fixed. Furthermore, a wider class of layers might exist 
where the above is still true but Il is permitted to vary slowly with x. This class is 
referred to as ‘quasi-equilibrium’ layers by Perry et al. (1994) and it is obvious that 
for these layers to exist 
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mean flow " I  

FIGURE 2. Sketch of a representative attached eddy. 

As a measure of how close a layer is to quasi-equilibrium we could evaluate and 
tabulate a quantity r~ defined thus: 

0- = a[0.5,ZI,S,[,fl]. (17) 

An interesting point is that for equilibrium and quasi-equilibrium layers the hy- 
potheses of Perry et al. (1994) state that the mean non-dimensional defect distributions 
and the shear stress distributions are fixed by the parameter ZI alone. This means we 
have automatically, whether one believes in a gradient diffusion mechanism or not, a 
universal distribution of eddy viscosity e given by e / (SCUT)  = y [q, ZI], where y is a 
universal function. This was also proposed by Clauser (1956). However one should 
keep in mind that this can only be approximately true and once condition (16) is 
violated, as is often the case (e.g. in Part 2), this eddy viscosity formulation breaks 
down. 

Another interesting point here is that according to equation (10) a 'linear stress 
layer' does not generally occur (analytically at least) in a developing boundary layer 
as was often assumed in the past. One exception to this is in the logarithmic wall 
region of a zero pressure gradient layer with S + co (see Perry, Li & M a r u Z  1991 
and Perry et al. 1994). 

3. Formulation of the attached eddy hypothesis 
Figure 2 shows schematically a representative attached eddy in a turbulent boundary 

layer. It leans in the streamwise direction with a fixed orientation as it slips relative 
to the boundary. This velocity of slip is assumed to occur across a thin viscous 
region which could be regarded as a vortex sheet. The eddy height is 6. The vortex 
tube shown is symmetrical about the (x,z)-plane and for z/6 sufficiently large the 
plane of the loop is probably at about 45" to the wall. It should be mentioned that 
this representative eddy should be regarded as a statistical concept which possesses 
the gross features of an assemblage of eddies. An instantaneous realizable eddy will 
probably be a gross distortion of this representative eddy. 

It will be assumed that a turbulent boundary layer is made up of a random array 
of such eddies distributed over the surface with an average density proportional to 
1/h2. In previous work, for example Perry & Chong (1982), Perry et al. (1986), and 
Perry, Lim & Henbest (1987), this was referred to as a 'hierarchy' because it really 
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consists of eddies at different stages of stretching and hence of different heights and 
shapes. Here we are replacing such eddies with a random array of 'representative 
eddies' which are all of the same height, shape and velocity scale. Furthermore, it is 
assumed that a range of geometrically similar arrays of eddies exists with the scale 
6 ranging from hl ,  the smallest eddy (6, = O(lOOv/U,)) to 6,, the boundary layer 
thickness. Since we are integrating over a range of scales, individual departures of 
actual eddies from the representative eddies will be washed out. In the case of rough 
walls it has been suggested that d1 is related to the roughness scale (Perry et al. 
1987 and Perry & Li 1990). Let K be the circulation of the vortex loop. Let ro be 
the effective radius of the vortex 'rod' forming the loop, and let QO be the effective 
vorticity within the rod such that 

K = nr$20. (18) 

Let the characteristic velocity scale UO of the eddy be defined such that 

and therefore 

where q = ro/6 which is a geometric constant. Let the average streamwise and 
spanwise spacing of the eddies be k,6 and k,6 respectively, where k ,  and k ,  are 
geometric constants. The mean spanwise vorticity dU/dz for one scale of eddies (or 
for one hierarchy) is given by 

that is 

<H[Z/6] = --- uo /m/mg (? j )  d(x/6)d(y/6). 
kxk, 6 q2 --m -0Ofio 

Let PH[6]  be the probability density function for eddy scales 6. Hence the mean 
vorticity for a range of scales from 61 to 6, is 

Let 

where D1 is a weighting function. If D1 is a constant then P H [ 6 ]  gives a -1 power 
law p.d.f. which under certain conditions leads to the well-known logarithmic velocity 
defect distribution. However, in general Dl[S/6,] will vary with 6/6, and will be a 
measure of the departure of P H [ ~ ]  from a -1 power law p.d.f. 

From all of the above it is not difficult to show that 

where 



368 A. E. Perry and I. MaruSiC 

and is a function only of the geometry of the non-dimensional vorticity distribution. 
Also 

and is a measure of how the characteristic velocity scale to friction velocity ratio 
varies with eddy scale, while 

and this is a measure of how the p.d.f. of eddy scales departs from a -1 power law 
and how the eddy population density on the (x,y,O) surface varies with eddy scale. 

Equation (25) can be transformed using the following logarithmic variables. Let 

i = log[d/z], l E  = log[&/z], A1 = log[b1/z] (29) 

and let U i  = ( U ,  - U)/U, .  This leads to the following convolution integral: 

where 

The functions w and T switch to zero when 1 < 1 1  and 1 > &. This effectively 
controls the limits of the integration. 

The streamwise, spanwise and normal-to-the-wall velocity components are denoted 
by the index values of 1, 2 and 3 respectively. 

The Reynolds stresses may be computed using the Biot-Savart law applied to an 
isolated eddy together with its image in the wall. Let the contribution to the Reynolds 
stress from one scale of eddies be denoted by d(u,ui) and is given by 

w[1 - A51 = D[S/Scl, T [ i  - &I = Q[d/scl, h[iI = f[z/61. (31) 

where V ,  are velocity 
of how this relates to 
B.) Therefore 

and then finally, 

components computed from the Biot-Savart law. (A discussion 
mean and fluctuating velocity components is given in Appendix 

where Q and D are as before and 

It can be seen that the li,[z/6] (the eddy intensity functions) are functions only of the 
geometry of the non-dimensional distribution of vorticity. Again using logarithmic 
variables we have 
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where 

Jij[A] = l i j [ Z / S ] .  

Equation (30) which gives the mean velocity defect distribution and (36 )  which gives 
the Reynolds shear stress distribution are decoupled since the former depends on T w  
and the latter on T 2 w .  Unless further hypotheses about T and w are introduced (as 
in Perry et al. 1994) we have no connection between (30) and (36) which will lead to 
closure for computing the streamwise evolution of the boundary layer. 

Turbulence spectra can be computed in a similar way by a slight extension of the 
work of Perry et al. (1986). Here, their analysis will be repeated in terms of the 
notation used above. Using the Biot-Savart law, velocity signatures can be computed 
from an isolated eddy and its image, in terms of x along lines of constant y and z ,  i.e. 
V,[x] say. The Fourier transform in terms of non-dimensional quantities is given by 

where kl is the streamwise wavenumber. The power spectral density of a random 
array of such eddies of scale 6 is 

P i j [ k 1 6 , ~ / 6 ]  = Ui/k,k,, Re { F ; F j )  d(y/6). (38) 1: 
Here Re means ‘the real part of‘ and the asterisk indicates a complex conjugate. Let us 
now express the power spectral density as a function of k l z .  Using the convention that 
the wavenumber argument indicates the non-dimensional wavenumber over which 
the spectral density is measured, then 

where 

and can be obtained from an isolated eddy and its image and is a function only of 
the eddy geometry. 

As for earlier quantities, the spectral density for a range of scales is 

and therefore 

Multiplying both sides by k l z  and using premultiplied spectra together with logarith- 
mic variables we have 
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Bodily shift for 

0 0 

,IE increasing - 
Dirac Dirac 
delta delta 
function function 

Y / d  0 0 1 216 0 ‘ E  

FIGURE 3. Different type-A attached eddies with their corresponding vorticity 
distributions and T w  weighting functions. 

Finally, it can be shown that the eddy intensity function J is related to the eddy 
spectral function g by 

J i j i J - 1  = gij[az,Al daz. (44) c 
Actually it turns out to be quicker to compute eddy intensity functions using (44) 

rather than using (35). It is found that both methods give the same answer. 

4. Mean velocity and stress distributions in the fully turbulent wall region as 
given by the attached eddy hypothesis 

Eddy shapes of the type shown in figure 3 where the legs extend all the way to the 
wall will be called type-A eddies. Other eddy types will be considered later. Figure 3 
shows a variety of type-A eddy shapes which lie on a plane inclined at 45” to the wall 
in the streamwise direction together with the vorticity intensity functions f[z/6] and 
h[i]e&. Also shown is T[A -A,]w[A - A,] superimposed on the l~[A]e-~ versus 1 plot. 
The integral of the product of h[A]e-’ with T[A - &]w[;l- AE] with AE -+ GO gives 
the functional form for dU;/d& close to the wall. 

For A - 2, large and negative (i.e. low 6/6,) T and w are taken to be constants, 
meaning a constant characteristic velocity scale and geometrically similar hierarchies 
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(the eddies and their non-dimensional spacing are geometrically similar) and a -1 
power law p.d.f. of eddy (hierarchy) scale. 

It can be seen from figure 3 that for 1, sufficiently large no matter what eddy 
shape is chosen, the integral of the product becomes a constant and from equation 
(30) dU;/diE = constant, i.e. 

where IC happens to be the Karman constant, which is used in part to evaluate T and 

Figure 4 shows sketches of the eddy intensity functions 1 1 3 ,  111, 122 and 1 3 3  for type- 
A eddies. The important near-wall behaviour was first deduced by Townsend (1976) 
using inviscid boundary conditions. 113 must be linear with z/6 as z/6 --+ 0, 111 and 
122 must approach a constant and 1 3 3  must be parabolic in z/6. These important 
features are shown for the corresponding J i j [A]  plotted versus 1 in the figure. Again, 
T and w are constant for sufficiently large and negative I.-&. It can be seen from the 
figures that the convolution integral (36) leads to the following near-wall conditions: 

W .  

This constant must be unity (for sufficiently high Reynolds number) and this condition 
in part helps to evaluate T and w. Next 

where the constant HI in part depends on the form of T 2 [ 1  - &]w[ll - A,] over the 
range b shown in the figure. This in turn depends on outer flow conditions (such as 
the Coles wake factor), thus HI is a characteristic constant, but Klg is universal (= 
Al  say) once an eddy shape has been fixed. A similar analysis applies for q / U :  and 

- - so 

For G / U :  it can be seen that 

which is a universal constant. These forms were first arrived at by Townsend (1976). 
Departure from these above relationships for increasing z/6, is controlled by how 

T2[A - 1 ~ ] w [ 1  - A,] behaves over the region b shown in the figure. For example, the 
Reynolds shear stress gradients and higher derivatives with z/6, are controlled by 
this region b. 

It will be noted that A1 is considered to be so small compared to A,, that it has 
not been shown on the diagram in figure 4. However in figure 5 it has been included 
to illustrate the effect of the smallest attached eddy-scale cut-off and to illustrate an 
important Reynolds number effect. One can see that once 11 exceeds zero, i.e. 61/z 
becomes larger than 1 or z < dl, then we are in the smallest attached eddy scale and 
the Reynolds shear stress drops rapidly to zero as z/6, --+ 0 and the total shear stress 
ratio z/zo must be taken up by viscous contributions as given in equation (5). To do 
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I33[2/4 t Parabolic 4 J33L \ -J33[A] = K33e-" . 

FIGURE 4. Typical eddy intensity functions for type-A eddies with TZw weighting functions. 

this we must insert a viscous layer and buffer zone into the attached eddy model. In 
figure 5 it is seen that 2~ - i l l  is an important parameter. Given 21 = lOOv/U, then 
AE - 21 = log(6,U7/10Ov) or log[K,/lOO] where K ,  is the Karman number 6,U,/v. 
The higher K ,  is, the larger is 2~ - 11 and hence the higher 2~ can go before we 
experience this viscous cut-off. Hence the larger K ,  is, the smaller z/6, can become 
before reaching the viscous zone. 

In all this work we are assuming that we are dealing with layers where K ,  is 
sufficiently large to allow z / 6 ,  to always be in the turbulent wall region, no matter 
how small we make it. 

5. Testing hypotheses with experiment using type-A eddies 
With the mathematical framework in place certain hypotheses concerning eddy 

shape can be made. The first hypothesis to be tested is that all eddies are of a 
universal shape and that the Reynolds stress distributions and spectra are controlled 
by variations of velocity scale and population density with eddy scale 6. These are 
expressed by the function T2[A - &]w[n - 

It should be pointed out at the outset that the theoretical predictions are valid only 
beyond the viscous buffer zone and that all experimental measurements were made 
beyond this buffer zone. The condition z / &  -+ 0 is meant to imply the smallest value 
of z / 6 ,  we can have without intruding into the buffer zone. 

We will first look at the data of East, Sawyer & Nash (1979) who produced a series 
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Bodily shift for 
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FIGURE 5. Effect of lower limit cut-off at i l  
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East, Sawyer & Nash (1979) data 

Flow no. symbol 17 S i a cr H Re Kr 
1 4 0.34 26.7 0.09 -0.25 -0.14 1.31 7410 3424 
2 D 0.41 27.3 % 0.0 -0.15 % 0.0 1.29 10700 4563 
3 A 0.59 28.6 -0.04 -0.01 0.04 1.31 13000 4850 
4 0 0.95 30.9 -0.18 0.47 0.08 1.35 18900 5757 
5 0 1.69 34.4 -0.08 1.90 0.04 1.45 26800 6171 
6 0 3.58 43.0 3.59 7.27 -0.18 1.68 34700 5338 

Sklre & Krogstad (1994) 

x ( m )  symbol 17 S ( B cr H Re K ,  
4.80 0 6.85 59.4 % 0.0 19.0 = 0.0 1.99 49180 5123 

TABLE 1. Mean flow parameters for the equilibrium flow studies of East et al. (1979) and Skire & 
Krogstad (1994). (Flow no. 7 of East et al. (n = 11.6) is not considered here since the turbulence 
intensities would have been too high for conventional hot-wire anemometry). Here CT given by (16), 
H = 6*/Q, = Q U l / v  and K ,  = 6,U,/v; % is the momentum thickness and 6' is the displacement 
thickness. 

of equilibrium boundary layers each having an approximately constant Il. Table 1 
shows the important features of the data and (T can be seen to be small, thus showing 
that the layers were either equilibrium layers or else quasi-equilibrium layers (only 
one velocity profile as published for each flow case). 

The first eddy shape to test is the TI-shaped' eddy, the precise geometry of which 
is given in figure 6. Now from the experiment, the mean-flow data provides all the 
necessary information for computing 7/70 from equation (15), i.e. we require S, Il, p 
and [ as given in table 1. Equation (15) and shear stress data are compared in figure 7 
and agreement appears to be reasonable although the flow might be slightly three- 
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FIGURE 6. Details of type-A ‘n-shaped’ eddy. Here yo is the standard deviation 
of the Gaussian distribution. 

rdd = 0.05 

/ 

0 1 X I 6  y/S -0.5 0 0.5 

1 
t -/ 1 

0.0 0.2 0.4 0.6 0.8 1 .o 
zJ6, 

FIGURE 7. Reynolds shear stress data of the ‘equilibrium’ flow study of East et al. (1979) compared 
to formulation (15). (Symbols as given in table 1). 

dimensional for IZ = 3.58. (Much better agreement will be seen with the authors’ 
data in Part 2.) 

Since the eddy shape is fixed, J13 is known and since 7 / 7 0  (= - m / U ; )  is 
known from (15), equation (36) can be used to determine T2[A - AE]w[A - A E ]  by 
deconvolution for the various streamwise stations. For the purposes of deconvolution, 
a Fourier transform method was used which essentially involved the division of two 
Fourier transforms. The ends of the functions being deconvolved were slightly 
modified to avoid singularities or indeterminacies. Only smooth results from the 
deconvolution were accepted and were always tested by a convolution to make sure 
we could reconstruct the original function. Problems with this are discussed in $8. 
Once T2[A - &]w[A - AE]  is known, equation (36) can be used to determine the 
various other Reynolds stresses by a direct convolution calculation, again by using 
equation (36). 

Figure 8 shows the results compared with data and the agreement is poor. Although 
the curves appear to have the correct semi-logarithmic behaviour in figure 8(a )  for 
z/6, --f 0, the intercepts are wrong and the ‘bump’ in the data at z / 6 ,  w 0.5 is missing 
in the theoretical curves. The agreement in figure 8(c )  is very poor for the downstream 
profiles. Unfortunately there are no data for the theoretical curves given in figure 8(b). 

Various other eddy shapes were tried besides the simple TI’ eddy but comparisons 
always showed poor agreement. These attempts included varying the inclinations of 
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FIGURE 8. Reynolds normal stresses for data of East et al. (1979) compared to formulation (36) 
using a type-A 'IT-shaped' eddy structure alone. No spanwise measurements are available from 
East et al. 

the eddies but this also did not help. The most important discrepancies are the absence 
of the 'bump' for high n values in T / U :  at z / &  = 0.5 and incorrect intercepts. For 
low values of Ti' the agreement was fair but as n increased, the agreement rapidly 
deteriorated. Clearly type-A eddies alone are inadequate no matter what their shape 
and some additional structure is needed. 
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FIGURE 9. Sketch of typical type-B eddy. 

Random positions - 
- 

Random positions 

FIGURE 10. Simplified candidates to make up the type-B eddy structure. 

6. A second type of eddy structure (type-B) 
Considering the shortcomings of using type-A eddies alone, it is found that essen- 

tially what is needed are additional structures. Various types were tried including 
ring vortices but the only kind which gave the right kind of properties look like 
those shown in figure 9. Such structures will give the ‘bump’ needed in the ?/U: at 
z / 6 ,  NN 0.5 and we will refer to these as type-B structures. 

Again we will assume a range of scales from 61 to 6, but the stresses are given by 
the sum of two convolution integrals 

and immediately problems arise. The first problem is to obtain a random array of 
type-B eddies without an enormous computation effort. It was decided to replace 
them with ‘A’-type eddies as shown in figure 10. This avoids the problem of having to 
jitter the spacings of adjacent undulations shown in figure 9 but it introduces vortex 
tubes which end in mid air. For the purposes of illustration here, the authors do not 
consider this to be a major shortcoming as the velocity field still remains divergence 
free even though this is not so locally for the vorticity field (see Winckelmans & 
Leonard 1993). The position of the structures shown in figure 10 will be effectively 
randomized just as with type-A eddies by the use of the integrals given in $3. 

The second problem is to decide how to partition the energies between the two sets 
of structures. Various schemes were attempted and all proved to be intractable. It 
was decided to try out an idea similar to one first proposed by Coles (1957). Let us 
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FIGURE 11. Sink flow shear stress profiles. 

suppose that the turbulent boundary layer is made up of two sets of structures. One 
set are the ‘wall structures’ (type-A) and these contribute to the ‘law of the wall’ in 
the mean flow as well as in the turbulence structure and this structure is universal. In 
this flow ll is zero. Such a flow exists in equilibrium sink flow (discussed in detail in 
Perry et al. 1994) and in fact it can be shown that /3 = -0.5 for S + co. For finite S, 
we still have II very small and 7/70 is very insensitive to S provided the appropriate 
f l  is used (see Perry et al. 1994). The shear stress distribution is shown in figure 11 
and was calculated from (15) with I7 = 0. This is given by 

7 60 20 45 24 60 
- = l - - q - - q  + - q  ---q +-qlog[q] 
70 59 59 59 59 59 

with the Lewkowicz (1982) formulation (9). This ‘pure wall’ flow (valid to q = 1) is 
given by (1) and (9) as 

1 “:I K 

u 1  
- = -log - + A  - -q2(1 - q)(l  - 2q). u, K 

This new extended ‘law of the wall’ is seen to include q to ensure that dU/dz = 0 at 
q = 1. In earlier formulations only the logarithmic law of the wall was used and (51) 
reduces to 

(53 )  

which is close to (51) as seen in figure 11. It can be seen that Tj[A - & ] W A  [ A  - A,] is 
universal and can be determined by a deconvolution once type-A eddies are fixed. 

The shear stress distribution in figure 11 is then subtracted from the total shear 
stress and once the type-B eddy geometry is fixed T i  [A - &]wB [A - A E ]  can be found 
by a deconvolution. Hence once 7’2 [A - A,] W A  [A - A E ]  and T i  [A  - A E ] W B  [A - AE] are 
determined all other stress components and spectra can be found by convolution. All 
mathematical processes will be summarized in $9. 

Regarding the mean flow, the type-B eddies will contribute to the Coles wake 
component. While this is very close to the idea of Coles, the only support we have 
for it here is that it is the only scheme that we have found so far that will work. 

As mentioned earlier, equations (30) and (36 )  are decoupled and so the appropriate 
TA, TB,  W A  and W B  can always be found to give the logarithmic law of the wall and 
the Coles law of the wake as well as the appropriate Reynolds stresses. 

7 
- = 1 - q + q log[q] 
70 
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FIGURE 12. Typical eddy intensity functions for type-B eddies with T2w weighting functions. 

7. Mathematical properties of type-B eddies. 
Type-B eddies are still attached eddies in the sense of Townsend since all aspects 

of their length scale are related to their height above the wall but their legs do not 
extend to the wall. They could perhaps be described as 'attached-detached' eddies. 
Numerical results show that the inviscid boundary condition at the wall is quite 
different from that given by type-A eddies. Firstly, Z13 is zero for a considerable range 
of z/6, I l l  and 122 are constant for a considerable range of z/6 and I33 is zero also 
over a considerable range as indicated in the sketch in figure 12. Actual I ,  used for 
type-A and type-B eddies are shown in values (see $8). Deconvolutions show that 
T2w decreases to zero for sufficiently large negative values of 2 - AE.  From the figure 
it is obvious that for AE + co: 

- - - __ 4 4 U 2  

u,' u,2 u,' u,' 
-+ 0, - -+ 0, - + const. = Ql(say) and 2 + const. = Q2(say) u1u3 -- 

and this is applicable for a considerable range of z/6,. Hence with both type-A and 
type-B eddies acting together we have for AE + co 
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FIGURE 13. Type-A and type-B eddy structures chosen for calculation. The resulting type-B structure 
is an ensemblage of the four above structures. ro/6 = 0.05 in all cases; Gaussian distribution of 
vorticity is assumed in the vortex tubes. 

8. Choice of eddy shapes and comparison of stresses with experiment 
The choice of geometry for type-A and type-B eddies at this stage must be based 

on trial and error. It is a very time consuming process and will remain so until 
some systematic search can be achieved (this will most probably require an increase 
in computational rates). Eddy shapes are presented here purely to prove the point 
that a single universal shape for type-A and type-B performs extremely well for 
all situations. The authors wish to emphasize that these are temporary shapes to be 
changed at any time without notice. The present candidates are shown in figure 14. 
It will be noted that type-B eddies are not contained in a 45” plane orthogonal to 
the (x,z)-plane but are twisted out of the plane. Thus we have an ensemblage of 
left- and right-handed, upright A’s and upside down A’s constituting type-B eddies 
as shown in the figure. For the type-A eddies ‘A’-shaped eddies were chosen and are 
also shown in the figure. These shapes were chosen mainly to match q / U :  data of 
the authors given in Part 2. ‘Twisted’ type-A eddies have not been tried. For all eddy 
shapes chosen, we have attempted to use only long straight vortex segments. These 
have simple analytic solutions which make for rapid and efficient computations. Once 
these eddy geometries are chosen, the only information necessary is II, S ,  f l  and ( 
which are substituted into equation (15). From this, all Reynolds stress distributions 
and spectra are produced from convolution integrals without any adjustment to any 
constants. Everything basically comes from the momentum equation (coupled with 
the mean-flow law of the wall and law of the wake) once the eddy geometries are fixed. 
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FIGURE 14. Reynolds normal stresses for data of East et al. (1979) compared to formulation (50) 
using type-A and type-B eddies as shown in figure 13. No spanwise measurements are available 
from East et al. 

Figures 14(a), 14(b) and 14(c) show the profiles of all the normal stress components 
for the various flow cases of East et al. Although the agreement is not perfect, it is 
a great improvement over the agreement shown in figure 8. As a matter of interest, 
using the theory outlined in $3, the actual eddy intensity functions computed for the 
assumed eddy shapes are given in Appendix C. 

In the literature, measurements using modern hot-wire techniques of Reynolds 
shear stresses together with all three normal stresses for layers with pressure gradients 
are rare. Recently Skire & Krogstad { 1994) produced such measurements for one 
equilibrium layer and details are shown in table 1. 
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FIGURE 15. Reynolds shear stress data of the ‘equilibrium’ flow study of Sklre & Krogstad (1994) 
compared to formulation (15) (solid line). The broken line represents the reconstructioned profile 
after the deconvolution procedure. See text. 

Figure 15 shows the Reynolds shear stress distribution computed from values given 
in the table using (15) and agreement can be seen to be reasonable. Comparisons 
with the three components of normal Reynolds stresses are given in figures 16(a), 
16(b) and 16(c). Again agreement seems reasonable and it is obvious that using 
type-A and type-B eddies is a great improvement over type-A eddies alone. It will 
be noted that with the data of East et al. (1979) and Skire & Krogstad (1994) there 
appears to be a discrepancy with the theory for 2 / U :  in the outer part of the 
flow. The authors believe that this is partly due to inaccuracies in the computational 
technique developed. A modified Fourier transform deconvolution method has been 
used and the reconstructed -u,U,/U,‘ distribution after the T2w distribution has 
been established never quite agrees with the original distribution as given by (15). 
An example of this is shown in figure 15 as a broken curve. Any attempt to obtain 
a better match often led to instabilities in the calculations. Since these discrepancies 
are minor, particularly in the authors’ data to be reported in Part 2, this numerical 
problem was not pursued. 

9. Summary of computational methods 
Figure 17 shows an overview of the convolution and deconvolution calculations 

carried out if we assume that the turbulent boundary layer consists of type-A eddies 
alone. It can be seen that this will give all Reynolds stresses provided we know 17, 
S ,  p and [ and the eddys shape, i.e. the J l j [A] .  Figure 18 shows a flowchart for the 
corresponding calculations for the wall-wake eddy structure model. 

10. Conclusions 
Here a modification of the attached eddy hypothesis has been made in order 

to explain data for boundary layers with pressure gradient. Comparisons with the 
data of East et al. (1979) and Skire & Krogstad (1994) show encouraging agreement 
with this modified hypothesis. Unlike previous versions, it was found necessary to 
incorporate both ‘wall structure’ (type-A eddies) and ‘wake structure’ (type-B eddies) 
into the model. 
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FIGURE 16. Reynolds normal stresses for data of Skire & Krogstad (1994) compared to formulation 
(50) using type-A and type-B eddies as shown in figure 13. Broken line is for type-A eddies alone. 

The data tested here are from equilibrium and quasi-equilibrium layers. In Part 2, 
an extensive set of non-equilibrium data produced by the authors has been compared 
with this extended attached eddy hypothesis. 
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FIGURE 17. Overview of calculations for type-A eddy structures alone. 
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Appendix A 
Substituting (2) and (3) into (4) and integrating we obtain 

t 
- = 1 + AlXl+ A2X2 + A3X3 + A4X4 
70 

where 

and 
Ai = Ai[o, n, 5'1 

ddc 6 dS dI l  6, dU1 x3 = &--' x4 = --. X I = - ,  x 2 = c -  
dx S dx' dx U1 dx 

The Ai are given by 

This is the form arrived at by Perry & Li (1991) and in an equivalent form by MaruK 
(1991). Now relationships can be established between the Xi as follows. From the 
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FIGURE 18. Overview of calculations for the wall-wake eddy structure model. 

logarithmic law of the wall and law of the wake 

X2 = Ei(X1+ NX3 + X4) 

where 
1 

El = ___ 
K S  + 1 

and 

From the outer boundary condition z/zo = 0 at y = 1 

0 = 1 + B l X l +  B2Xz + B3X3 + B4X4 

Bj =Aj[l , l l ,S].  

where 
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From (A 3)-(A 6) X1 and X2 can be expressed in terms of X3 and X4 to give 
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FIGURE 19. Typical velocity signature over interval L 

where 

Appendix B 
The velocity components Vj used in equation (32) obtained from the Biot-Savart 

law are the contributions made by an isolated eddy and its image in the wall. This 
velocity is relative to an observer at rest with the fluid at infinity and the convection 
velocity of the eddy does not need to be specified in this calculation. Figure 19 shows 
a typical Vi pulse and it is of a limited spatial length. 

In the figure L is the length over which we wish to obtain an average E ,  and this is 
by definition 

and this applies also in the limit as L --+ co in which case E --+ 0. 

the spacing of length L, then 

where ui is a perturbation with zero mean and 

Suppose we have a spatially periodic signal with a pulse of shape Vi repeated with 

vj =ui+e  

However, it can be shown that if Vi decays faster than xP1 for x co, then 

J - L j :  

Hence Vj ,  the Biot-Savart law signature, can be used for computing mean squares and 
cross-correlations of the fluctuating velocity components which have a zero mean. By 
way of example, suppose that a zero mean signal S(x) is made up of a large number 
n of pulses given by V ,  with random phases within the interval L. For infinite L, n 
also approaches infinity and the mean square of S is given by 
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FIGURE 20. ( a )  Type-A eddy intensity functions, ( b )  Type-B eddy intensity functions 

where 6, is the average spacing of pulses. This forms the basis of analysis given in $3 
where the concept has been extended to two-dimensional distributions. 

Appendix C 
Figures 20(a) and 20(b) show computed eddy intensity functions for the type-A 

and type-B eddies shown in figure 13. The results are normalized here such that 
Tj[A - AE]wA[A - A E ]  = 1 for (A - AE) + -a. 
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